
Package index
-
abc_model()
- Apply the ABC model for literature-based discovery with improved filtering
-
abc_model_opt()
- Optimize ABC model calculations for large matrices
-
abc_model_sig()
- Apply the ABC model with statistical significance testing
-
abc_timeslice()
- Apply time-sliced ABC model for validation
-
anc_model()
- ANC model for literature-based discovery with biomedical term filtering
-
bitola_model()
- Apply BITOLA-style discovery model
-
calc_bibliometrics()
- Calculate basic bibliometric statistics
-
calc_doc_sim()
- Calculate document similarity using TF-IDF and cosine similarity
-
clear_pubmed_cache()
- Clear PubMed cache
-
cluster_docs()
- Cluster documents using K-means
-
compare_terms()
- Compare term frequencies between two corpora
-
create_citation_net()
- Create a citation network from article data
-
create_comat()
- Create co-occurrence matrix without explicit entity type constraints
-
create_report()
- Generate a comprehensive discovery report
-
create_sparse_comat()
- Create a sparse co-occurrence matrix
-
create_tdm()
- Create a term-document matrix from preprocessed text
-
create_term_document_matrix()
- Create a term-document matrix from preprocessed text
-
detect_lang()
- Detect language of text
-
diversify_abc()
- Enforce diversity in ABC model results
-
enhance_abc_kb()
- Enhance ABC results with external knowledge
-
eval_evidence()
- Evaluate literature support for discovery results
-
export_chord()
- Export interactive HTML chord diagram for ABC connections
-
export_chord_diagram()
- Export interactive HTML chord diagram for ABC connections
-
export_network()
- Export ABC results to simple HTML network
-
extract_entities()
- Extract and classify entities from text with multi-domain types
-
extract_entities_workflow()
- Extract entities from text with improved efficiency using only base R
-
extract_ner()
- Perform named entity recognition on text
-
extract_ngrams()
- Extract n-grams from text
-
extract_terms()
- Extract common terms from a corpus
-
extract_topics()
- Apply topic modeling to a corpus
-
filter_by_type()
- Filter a co-occurrence matrix by entity type
-
find_abc_all()
- Find all potential ABC connections
-
find_similar_docs()
- Find similar documents for a given document
-
find_term()
- Find primary term in co-occurrence matrix
-
gen_report()
- Generate comprehensive discovery report
-
get_dict_cache()
- Get dictionary cache environment
-
get_pmc_fulltext()
- Retrieve full text from PubMed Central
-
get_term_vars()
- Extract term variations from text corpus
-
get_type_dist()
- Get entity type distribution from co-occurrence matrix
-
is_valid_biomedical_entity()
- Determine if a term is likely a specific biomedical entity with improved accuracy
-
load_dictionary()
- Load biomedical dictionaries with improved error handling
-
load_results()
- Load saved results from a file
-
lsi_model()
- LSI model with enhanced biomedical term filtering and NLP verification
-
map_ontology()
- Map terms to biomedical ontologies
-
merge_entities()
- Combine and deduplicate entity datasets
-
merge_results()
- Merge multiple search results
-
min_results()
- Ensure minimum results for visualization
-
ncbi_search()
- Search NCBI databases for articles or data
-
parallel_analysis()
- Apply parallel processing for document analysis
-
perm_test_abc()
- Perform randomization test for ABC model
-
plot_heatmap()
- Create heatmap visualization from results
-
plot_network()
- Create network visualization from results
-
prep_articles()
- Prepare articles for report generation
-
preprocess_text()
- Preprocess article text
-
pubmed_search()
- Search PubMed for articles with optimized performance
-
query_external_api()
- Query external biomedical APIs to validate entity types
-
query_mesh()
- Query for MeSH terms using E-utilities
-
query_umls()
- Query UMLS for term information
-
run_lbd()
- Perform comprehensive literature-based discovery without type constraints
-
safe_diversify()
- Diversify ABC results with error handling
-
sanitize_dictionary()
- Enhanced sanitize dictionary function
-
save_results()
- Save search results to a file
-
segment_sentences()
- Perform sentence segmentation on text
-
valid_entities()
- Filter entities to include only valid biomedical terms
-
validate_abc()
- Apply statistical validation to ABC model results with support for large matrices
-
validate_biomedical_entity()
- Validate biomedical entities using BioBERT or other ML models
-
validate_entity_comprehensive()
- Comprehensive entity validation using multiple techniques
-
validate_entity_with_nlp()
- Validate entity types using NLP-based entity recognition with improved accuracy
-
validate_umls_key()
- Validate a UMLS API key
-
vec_preprocess()
- Vectorized preprocessing of text
-
vis_abc_heatmap()
- Create a heatmap of ABC connections
-
vis_heatmap()
- Create an enhanced heatmap of ABC connections
-
vis_network()
- Create an enhanced network visualization of ABC connections
-
vis_abc_network()
- Visualize ABC model results as a network