
Package index
-
abc_model() - Apply the ABC model for literature-based discovery with improved filtering
-
abc_model_opt() - Optimize ABC model calculations for large matrices
-
abc_model_sig() - Apply the ABC model with statistical significance testing
-
abc_timeslice() - Apply time-sliced ABC model for validation
-
anc_model() - ANC model for literature-based discovery with biomedical term filtering
-
bitola_model() - Apply BITOLA-style discovery model
-
calc_bibliometrics() - Calculate basic bibliometric statistics
-
calc_doc_sim() - Calculate document similarity using TF-IDF and cosine similarity
-
clear_pubmed_cache() - Clear PubMed cache
-
cluster_docs() - Cluster documents using K-means
-
compare_terms() - Compare term frequencies between two corpora
-
create_citation_net() - Create a citation network from article data
-
create_comat() - Create co-occurrence matrix without explicit entity type constraints
-
create_report() - Generate a comprehensive discovery report
-
create_sparse_comat() - Create a sparse co-occurrence matrix
-
create_tdm() - Create a term-document matrix from preprocessed text
-
create_term_document_matrix() - Create a term-document matrix from preprocessed text
-
detect_lang() - Detect language of text
-
diversify_abc() - Enforce diversity in ABC model results
-
enhance_abc_kb() - Enhance ABC results with external knowledge
-
eval_evidence() - Evaluate literature support for discovery results
-
export_chord() - Export interactive HTML chord diagram for ABC connections
-
export_chord_diagram() - Export interactive HTML chord diagram for ABC connections
-
export_network() - Export ABC results to simple HTML network
-
extract_entities() - Extract and classify entities from text with multi-domain types
-
extract_entities_workflow() - Extract entities from text with improved efficiency using only base R
-
extract_ner() - Perform named entity recognition on text
-
extract_ngrams() - Extract n-grams from text
-
extract_terms() - Extract common terms from a corpus
-
extract_topics() - Apply topic modeling to a corpus
-
filter_by_type() - Filter a co-occurrence matrix by entity type
-
find_abc_all() - Find all potential ABC connections
-
find_similar_docs() - Find similar documents for a given document
-
find_term() - Find primary term in co-occurrence matrix
-
gen_report() - Generate comprehensive discovery report
-
get_dict_cache() - Get dictionary cache environment
-
get_pmc_fulltext() - Retrieve full text from PubMed Central
-
get_term_vars() - Extract term variations from text corpus
-
get_type_dist() - Get entity type distribution from co-occurrence matrix
-
is_valid_biomedical_entity() - Determine if a term is likely a specific biomedical entity with improved accuracy
-
load_dictionary() - Load biomedical dictionaries with improved error handling
-
load_results() - Load saved results from a file
-
lsi_model() - LSI model with enhanced biomedical term filtering and NLP verification
-
map_ontology() - Map terms to biomedical ontologies
-
merge_entities() - Combine and deduplicate entity datasets
-
merge_results() - Merge multiple search results
-
min_results() - Ensure minimum results for visualization
-
ncbi_search() - Search NCBI databases for articles or data
-
parallel_analysis() - Apply parallel processing for document analysis
-
perm_test_abc() - Perform randomization test for ABC model
-
plot_heatmap() - Create heatmap visualization from results
-
plot_network() - Create network visualization from results
-
prep_articles() - Prepare articles for report generation
-
preprocess_text() - Preprocess article text
-
pubmed_search() - Search PubMed for articles with optimized performance
-
query_external_api() - Query external biomedical APIs to validate entity types
-
query_mesh() - Query for MeSH terms using E-utilities
-
query_umls() - Query UMLS for term information
-
run_lbd() - Perform comprehensive literature-based discovery without type constraints
-
safe_diversify() - Diversify ABC results with error handling
-
sanitize_dictionary() - Enhanced sanitize dictionary function
-
save_results() - Save search results to a file
-
segment_sentences() - Perform sentence segmentation on text
-
valid_entities() - Filter entities to include only valid biomedical terms
-
validate_abc() - Apply statistical validation to ABC model results with support for large matrices
-
validate_biomedical_entity() - Validate biomedical entities using BioBERT or other ML models
-
validate_entity_comprehensive() - Comprehensive entity validation using multiple techniques
-
validate_entity_with_nlp() - Validate entity types using NLP-based entity recognition with improved accuracy
-
validate_umls_key() - Validate a UMLS API key
-
vec_preprocess() - Vectorized preprocessing of text
-
vis_abc_heatmap() - Create a heatmap of ABC connections
-
vis_heatmap() - Create an enhanced heatmap of ABC connections
-
vis_network() - Create an enhanced network visualization of ABC connections
-
vis_abc_network() - Visualize ABC model results as a network